
Welcome to Visual Basic .NET

The goal of this book is to help you come up to speed with the Visual Basic .NET language even if you
have never programmed anything before. We will start slowly, and build on what we learn. So take a
deep breath, let it out slowly, and tell yourself you can do this. No sweat! No kidding!

Programming a computer is a lot like teaching a child to tie their shoes. Until you find the correct way
of giving the instructions, not much gets accomplished. Visual Basic .NET is a language in which you
can tell your computer how to do things. But like a child, the computer will only understand if you
explain things very clearly. If you have never programmed before, this sounds like an arduous task, and
sometimes it is. However, Visual Basic .NET gives you a simple language to explain some very complex
things. Although it never hurts to have an understanding of what is happening at the lowest levels,
Visual Basic .NET frees the programmer from having to deal with the mundane complexities of writing
Windows programs. You are free to concentrate on solving problems.

Visual Basic .NET helps you create solutions that run on the Microsoft Windows operating system.
Chances are, if you are looking at this book, you have already felt the need or the desire to create such
programs. Even if you have never written a computer program before, as you progress through the Try
It Outs in this book, you will become familiar with the various aspects of the Visual Basic .NET
language, as well as its foundation in Microsoft's .NET Framework. You will find that it is not nearly as
difficult as you have been imagining. Before you know it, you will be feeling quite comfortable creating
a variety of different types of programs with Visual Basic .NET. As the name implies, Visual Basic .NET
can be used to create applications for use over the Internet. However, as when learning any new
technology, you have to walk before you can run, so we will start out focusing on Windows applications,
before extending our boundaries.

Windows Versus DOS Programming
A Windows program is quite a bit different from its ancient relative, the MS-DOS program. A DOS
program follows a relatively strict path from beginning to end. Although this does necessarily limit the
functionality of the program, it also limits the road the user has to take to get to it. A DOS program is like
walking down a hallway; to get to the end you have to walk down the hallway, passing any obstacles that
you may encounter. A DOS program would only let you open certain doors along your stroll.

Chapter 1

10

Windows on the other hand, opened up the world of event-driven programming. Events in this context
include, for example, clicking on a button, resizing a window, or changing an entry in a textbox. The
code that you write responds to these events. To go back to the hallway analogy: in a Windows program
to get to the end of the hall, you just click on the end of the hall. The hallway can be ignored. If you get
to the end and realize that is not where you wanted to be, you can just set off for the new destination
without returning to your starting point. The program reacts to your movements and takes the necessary
actions to complete your desired tasks. Visual Basic .NET simplifies the process of writing the code to
handle each event by allowing the programmer to write code only for those events that mean something
in the context of the program. All other events are ignored. For example, Windows distinguishes clicks
from double-clicks, which means that if you only want your program to react to a single click, you need
only write code for this single click; you do not have to write code to handle both single and double-
click events.

You have probably already begun to suspect that the hallway analogy is grossly over-simplified. The
main idea here is that in the DOS world, the user reacts to the program, and in the Windows world, the
program reacts to the user.

Another big advantage in a Windows program is the abstraction of the hardware. What this means is
that Windows takes care of communicating with the hardware for you. You do not need to know the
inner workings of every laser printer on the market, just to create output. You do not need to study the
schematics for graphics cards to write your game. Windows wraps up this functionality by providing
generic routines that communicate with the drivers written by the manufacturers of hardware. This is
probably the main reason why Windows has been so successful. The generic routines are referred to as
the Windows API (Application Programming Interface).

A Brief History of Visual Basic
Before Visual Basic 1.0 was introduced to the world in 1991, developers had to be well versed in C++
programming, as well as the rudimentary building blocks (Windows API) of the Windows system itself.
This complexity meant that only the dedicated and properly trained were capable of turning out
software that could run on Windows. Visual Basic changed all of that, and it has been estimated that
there are now as many lines of production code written in Visual Basic as in any other language.

Visual Basic changed the face of Windows programming by removing the complex burden of writing
code for the user interface (UI). By allowing programmers to draw their own UI, it freed them to
concentrate on the business problems they were trying to solve. Once the UI is drawn, the programmer
can then add code to react to events.

Visual Basic has also been extensible from the very beginning. Third-party vendors quickly saw the
market for reusable modules to aid developers. These modules, or controls, were original referred to as
VBXs (named after their file extension). If you didn't like the way a button behaved you could either
buy or create your own. However, these controls had to be written in C or C++. Database access
utilities were some of the first controls available.

When Microsoft introduced Visual Basic 3.0, the programming world changed again. Now you could
build database applications directly accessible to users (so called front-end applications) completely
with Visual Basic. There was no need to rely on third-party controls. Microsoft accomplished this task
with the introduction of the Data Access Objects (DAO), which allowed programmers to manipulate
data with the same ease as manipulating the user interface.

Welcome to Visual Basic .NET

11

Versions 4.0 and 5.0 extended the capabilities of version 3.0 in order to allow developers to target the
new Windows 95 platform. Crucially they also made it easier for developers to write code, which could
then be manipulated in order to be used by other language developers. Version 6.0 gave us a new way
to access databases with the integration of ActiveX Data Objects (ADO). ADO was developed by
Microsoft to aid web developers using Active Server Pages to access databases. With all of the
improvements to Visual Basic over the years, it ensured its dominant place in the programming world.
It helps developers write robust and maintainable applications in record time.

With the release of Visual Basic .NET, many of the restrictions that used to exist have been obliterated.
In the past, Visual Basic has been criticized and maligned as a "toy" language, as it did not provide all of
the features of more sophisticated languages such as C++ and Java. Now, Microsoft has removed these
restrictions and made Visual Basic .NET a very powerful development tool. Visual Basic .NET has
become a great choice for programmers of all levels.

Installing Visual Basic .NET
You may own Visual Basic .NET:

❑ As part of Visual Studio .NET, a suite of tools and languages that also includes C#
(pronounced C-sharp) and Visual C++ .NET

❑ Standard Edition, which includes a cut down set of the tools and languages available with
Visual Studio .NET

Both enable you to create your own applications for the Windows platform. The installation procedure
is straightforward and easy to do. In fact, the Visual Basic .NET Install is smart enough to figure out
exactly what your computer requires in order to make it work.

The descriptions that follow are based on installing Visual Studio .NET. However, all of Visual Studio
.NET's languages use the same screens and windows (and hence look very similar), so you won't be
seeing much that you would not see anyway.

Try It Out – Installing Visual Basic .NET

1. The Visual Basic .NET CD has an auto-run feature, but if the Setup screen does not appear
after inserting the CD, then you will have to run setup.exe from the root directory of the
CD. To do this, go to your Windows Start menu (usually found right at the bottom of your
screen) and select Run. Then type d:\setup.exe into the Open box, where d is the drive letter
of your CD drive. After the setup program initializes you will see the following screen:

Chapter 1

12

2. This dialog box shows the order in which the installation takes place. In order to function
properly, Visual Basic .NET requires that several components and updates be installed on
your machine. Step 1 is the Windows component update, so click on the Windows
Component Update link; you will then be prompted to insert the Component Update CD that
came with your Visual Studio .NET disks.

3. The installation program will then examine your system to see exactly which components
have to be installed. Depending on the current state of your machine, this list could include
any of the following items:

❑ Windows NT 4.0 Service Pack 6.0a

❑ Windows 2000 Service Pack 2

❑ Windows Installer 2.0

❑ Windows Management Infrastructure

❑ FrontPage 2000 Web Extensions

❑ FrontPage 2000 Server Extensions

❑ Setup Runtime Files

❑ Internet Explorer 6.0 and Internet Tools

❑ Microsoft Data Access Components 2.7

❑ .NET Framework

If you don't know what some of those things are, don't worry about it. They are just Windows
components that Visual Studio .NET or Visual Basic .NET requires.

Welcome to Visual Basic .NET

13

4. There may be numerous reboots of your computer as the system components are updated.
However, Microsoft has added a nifty automatic login feature to minimize the time required to
watch the installation if your computer requires a password to login:

As you can see, this feature is optional. If you choose not to use it, you will be prompted to
login after every reboot. This feature could provide a possible security breach, as the person
who is actually logged in does not have to be sat at the computer (so you may want to avoid
using this option in a busy office, for example), but it can reduce the boredom of watching
installation progress screens.

5. Click on Install Now! and the component update will begin. Completed items will have a
check mark and the component currently being installed will be identified by a red arrow:

Chapter 1

14

Depending on what components you already have installed on your machine, your list
of components that require updating may be different. For reference, these are the
options on a fresh install of Windows 2000 Professional, with no other software.

6. After the Windows Component Update has finished, you will be returned to the Setup screen
once more. You will now be able to install Visual Studio .NET, so click on Visual
Studio.NET:

Welcome to Visual Basic .NET

15

If at some point you wish to develop Web applications on this same machine, you will need to have
Internet Information Services (IIS) and FrontPage Extensions installed. These are installed by
default on Windows 2000 Server however, when installing on Windows 2000 Professional you may
encounter the following screen:

Selecting Install Components will guide you through the process of getting IIS and FrontPage
2000 Server Extensions installed. You will then be able to continue installing Visual Basic .NET.

If you choose Continue, you will not be able to develop local Web applications (such
as those discussed in Chapters 17 and 19) and will require access to a Web server.

7. As with most installations you will be presented with an option list of components to install.
You can just install the features that you need. For example, if your drive space is limited and
you have no immediate need for Visual C++ .NET, you can exclude it from the installation.
You will also be given the chance to select the location of items (although the defaults should
suffice unless your particular machine has special requirements). Any options not chosen at
the initial setup can always be added later as your needs or interests change.

There are three sections of information given for each feature:

❑ The Feature properties section outlines where the required files will be installed and how
much space will be needed to do this

❑ The Feature description box gives you an outline of what each feature is and does

❑ Finally, the Space Allocation section illustrates how the space on your hard drive will be
affected by the installation as a whole

When you are running Visual Basic .NET, a lot of information is swapped from the disk to
memory and back again. Therefore, it is important to have some free space on your disk. There is
no exact rule for determining how much free space you will need, but if you use your machine for
development as well as other tasks, anything less than 100MB free should be considered a full disk.

Chapter 1

16

8. Visual Studio .NET includes a large set of documentation files, the settings for which are
displayed under MSDN Documentation. The documentation can be set to run from the CD,
or installed directly on to your hard disk. You can set the install location as Path (install to
your hard disk) or Run from source (to have the documentation remain on the CD), via the
Feature properties box. Each piece of the documentation can be configured in this manner.

The default is for the documentation to remain on the CD. Only the indexes are copied to
your hard drive to aid in searches. This means that you will have to have the CDs available in
order to access the documentation. You are free to install some or all of MSDN onto your
hard drive. The following table lists the approximate sizes of each of the document sets by
their installed location:

Hard Disk Space Required

Docs on CD Docs on Hard Drive

Visual Basic Documentation 0.02 MB 5.93 MB

Visual C# Documentation 0.01 MB 1.48 MB

Visual C++ Documentation 0.04 MB 22.84 MB

.NET Framework
Documentation

0.02 MB 39.70 MB

Platform SDK Documentation 0.31 MB 137.21 MB

Additional MSDN
Documentation

0.17 MB 467.99 MB

Visual Studio Tools
Documentation

0.05 MB 11.22 MB

Visual Studio Documentation 0.03 MB 9.90 MB

Knowledge Base Articles 0.14 MB 114.30 MB

As you can see there is quite an impact on your free disk space if you install all of the
documentation!

9. Once you have chosen all of the features you want, click on Install Now! Installation will
begin and you can sit back and relax for a bit. The setup time varies depending on how many
features you chose to install. As a reference, the installation process took over an hour on a
650 MHz laptop computer with 256MB RAM, a 12GB hard drive, and running Windows 2000
Server. Keep in mind that this included all of Visual Studio .NET and all of the
documentation.

10.When installation is completed, you will see the following:

Welcome to Visual Basic .NET

17

Here you will see any problems that Setup encountered along the way. You are also given the
chance to look at the installation log. This log provides a list of all actions taken during the
installation process. Unless your installation reported errors, the installation log can safely be
ignored. The Visual Studio .NET setup is nearly complete. Click on Done to move on to the
final step.

11.We are returned to the initial setup screen again and the third choice is now available:

It is a good idea to select Service Releases to check for updates. Microsoft has done a good
job of making software updates available through the Internet. These updates can include
anything from additional documentation, to bug fixes. You will be given the choice to install
any updates via a Service Pack CD or the Internet. Obviously, the Internet option requires an
active connection. Since updates can be quite large, a fast connection is highly recommended.

Chapter 1

18

Once you have performed the update process, Visual Basic .NET is ready to use. Now the real
fun can begin! So get comfortable, relax, and let's enter the world of Visual Basic .NET.

The Visual Basic .NET IDE
You don't actually need the Visual Basic .NET product to write applications in the Visual Basic .NET
language. The actual ability to run Visual Basic .NET code is included with the .NET Framework. You
could actually just write all of your Visual Basic .NET using a text editor such as Notepad.

However, by far the easiest way to write in Visual Basic .NET is by using the Visual Studio.NET
Integrated Development Environment, also known as the IDE. This is what you actually see when
working with Visual Basic .NET – the windows, boxes, etc. The IDE provides a wealth of features that
are unavailable in ordinary text editors – such as code checking, visual representations of the finished
application, and an explorer that displays all of the files that make up your project.

Let's look at the Visual Basic .NET IDE now!

The Profile Setup Page
An IDE is a way of bringing together a suite of tools that make developing software a lot easier. Let's
fire up Visual Basic .NET and see what we've got. If you used the default installation, go to your
Windows Start menu and then Programs | Microsoft Visual Studio.NET 7.0 | Microsoft Visual
Studio.NET 7.0. A splash screen will briefly appear and then you should find yourself presented with
the Start screen's My Profile tab:

Welcome to Visual Basic .NET

19

This screen allows us to do some basic configuration of the IDE so that it serves us better. Since this
IDE serves all the Visual Studio .NET languages, there are some settings to tailor it to our particular
development interests.

Try It Out – Setting Up Our Profile

1. We are learning how to program using Visual Basic .NET, so select Visual Basic Developer
from the drop-down box. The IDE will now rearrange itself (it actually looks similar to the
Visual Basic 6 IDE).

2. You will also notice that the Keyboard Scheme and Window Layout options have changed to
show: Visual Basic 6. If you are at all familiar with earlier versions of Visual Basic, then this
should make you feel right at home. The Window Layout options rearrange the windows in
the IDE to look similar to previous versions of other Microsoft development tools. How you
lay out your windows in the future will be a matter of preference, but for now let's use the
Visual Basic 6 option.

3. The Help Filter drop-down box also allows the help system to focus better on what you will
find most useful. Set the Help Filter to Visual Basic.

4. The Show Help radio buttons allow us to select where help topics are displayed – Internal
Help shows topics within the IDE window (the same window where you see the Start Page),
whereas the External Help option opens topics in a separate window. This choice between
Help displayed within the IDE or in a separate window is a matter of personal preference.
However, until you are comfortable manipulating the various windows of the IDE, the
external option might prove more useful, as the IDE remains constant while Help is open.
You may receive a message that the change will not take effect until the next time you start
Visual Studio .NET.

5. The At Startup pull-down permits you to define what you see whenever you first start Visual
Studio .NET. The options here are:

Option Description

Show Start Page Shows the Start Page (with its Get Started tab selected)

Load last loaded Solution Opens last used solution

Show Open Project dialog box Allows opening of a previously created project

Show New Project dialog box Allows creation of a new project

Show Empty environment Opens only the IDE

Note here that a project is a group of forms and code files that work together to create
your application and these files are usually compiled into a single file. Sometimes when
we create very complex applications, we need to group more than one project together in
a solution. By default, however, each new project starts in its own separate solution.

Chapter 1

20

6. Once you have configured your profile to your liking, select Get Started from the vertical
menu bar to the left to begin using Visual Basic .NET.

The Get Started Page
By now, you may be a bit anxious to start writing some code. First, let's take a brief look at the Get
Started tab and see what is there. Assuming that you have been following along while setting up Visual
Studio .NET, your screen should now look something like this:

Menu bar Toolbar Solution Explorer

Properties windowOutput windowMain window

Toolbox

Let's begin our exploration of the Visual Basic .NET IDE by looking at the toolbar and menu, which as
you'll learn are not really that different from toolbars and menus you'll have seen in other Microsoft
software such as Word, Excel, and PowerPoint.

The Menu
Visual Studio .NET's menu is dynamic, meaning that items will be added or removed depending on
what you are trying to do. While we are still looking at the Get Started page, the menu bar will only
consist of the File, Edit, View, Tools, Window, and Help menus. However, when you start working on a
project, the full Visual Studio .NET menu appears as:

Welcome to Visual Basic .NET

21

At this point, there is no need to cover each menu topic in great detail. You will become familiar with each
as you progress through the book. Here is a quick rundown of what activities each menu item pertains to:

File
It seems every Windows program has a File menu. It has become the standard where you should find, if
nothing else, a way to exit the application. In this case, you can also find ways of opening and closing
single files and whole projects.

Edit
The Edit menu provides access to the items you would expect: Undo, Redo, Cut, Copy, Paste, and Delete.

View
The View menu provides quick access to the windows that make up the IDE, such as the Solution
Explorer, Properties window, Output window, Toolbox, etc.

Project
The Project menu allows you to add various extra files to your application.

Build
The Build menu becomes important when you have completed your application and want to be able to
run it without the use of the Visual Basic .NET environment (perhaps running it directly from your
Windows Start menu as you would any other application such as Word or Access).

Debug
The Debug menu allows you to start and stop running your application within the Visual Basic .NET
IDE. It also gives you access to the Visual Studio .NET debugger. The debugger allows you to step
through your code while it is running to see how it is behaving.

Data
The Data menu helps you use information that comes from a database. It only appears when you are
working with the visual part of your application (the [Design] tab will be the active one in the main window),
not when you are writing code. Chapters 15 and 16 will introduce you to working with databases.

Format
The Format menu also only appears when you are working with the visual part of your application.
Items on the Format menu allow you to manipulate how the windows you create will appear to the
users of your application.

Tools
The Tools menu has commands to configure the Visual Studio .NET IDE, as well as links to other
external tools that may have been installed.

Chapter 1

22

Window
The Window menu has become standard for any application that allows more than one window to be
open at a time, such as Word or Excel. The commands on this menu allow you to change the physical
layout of the windows in the IDE.

Help
The Help menu provides access to the Visual Studio .NET documentation. There are many different
ways to access this information (for example, via the help contents, an index, or a search). The Help
menu also has options that connect to the Microsoft Web site to obtain updates or report problems.

The Toolbars
There are many toolbars available within the IDE, including Formatting, Image Editor, and Text Editor,
which you can add to and remove from the IDE via the View | Toolbars menu option. Each one
provides quick access to often-used commands, preventing you from having to navigate through a series
of menu options. For example, the leftmost icon on the toolbar shown below (New Project) is available
from the menu by navigating to File | New | Project.

The default toolbar (called Standard) appears at the top of the IDE as:

New Project

Add New Item

Save Current File

Cut
Copy Paste

Navigate Backward

Start

Solution Configurations
Find Solution Explorer

Toolbox

Class View
Properties WindowFind in Files

Navigate Forwards
RedoUndoSave All

Open File

The toolbar is segmented into groups of related options, which are separated by a vertical bar.

The first five icons provide access to the commonly used project and file manipulation options available
through the File and Project menus, such as opening and saving files.

The next group of icons is for editing (Cut, Copy, and Paste).

The third group of icons is for editing and navigation. The navigation buttons replicate functionality
found in the View menu and allow us to cycle through the tabs at the top of the main window.

The fourth group of icons provides the ability to start your application running (via the blue triangle)
and to specify build configurations. There are times when you want certain parts of your code only to
appear in a debug version, a bit like a rough draft version of your application. For example, you may
have code in your application that is only useful for tracking down problems in the application. When it
is time to release your application to the world, you will want to exclude this code by setting the
Solution Configurations settings to Release. You can also access the functionality offered by this group
via the Build and Debug menus.

Welcome to Visual Basic .NET

23

The next section allows you to locate parts of your code quickly. The simplest way to search is to type
some text into the Find textbox and hit Enter. If the text is found, it will be highlighted in the central
window. The Find in Files option allows you to specify more sophisticated searches, including matching
the case of the text, looking in specific files or projects, and replacing the found text with new text. The
search functionality can also be accessed via the Edit | Find and Replace menu option.

The next group of icons provides quick links back to the Solution Explorer, Properties window,
Toolbox, and Class View. If any of these windows are closed, clicking the appropriate icon will bring it
back into view.

If you forget what a particular icon does, you can hover your mouse pointer over it so
that a tooltip appears displaying the name of the toolbar option.

We could continue to look at each of the other windows directly from the Start Page. But, as you can see
they're all empty at this stage, and therefore not too revealing. The best way to look at the capabilities of
the IDE is to use it while writing some code.

Creating a Simple Application
To finish our exploration of the Visual Basic .NET IDE we need to create a project, so that the windows
labeled in the earlier diagram actually have some interesting content for us to look at. We're now going
to create a very simple application called HelloUser that will allow us to enter a person's name and
will display a greeting to that person in a message box.

Try It Out – Creating a HelloUser Project

1. Click on the New Project button on the Start Page.

2. The New Project dialog box will open. Make sure you have Visual Basic Projects selected in
the Project Types tree-view box to the left. Next, select Windows Application in the
Templates box on the right. If you need to save this project to a location other than the
default, be sure to enter it into the Location box. Finally, type HelloUser in the Name text
box and click on the OK button:

Chapter 1

24

3. Visual Basic .NET will then create an empty Windows application for us. So far, our
HelloUser program consists of one blank window called a Windows Form (or sometimes just a
form), with the default name of Form1.vb:

Whenever Visual Studio .NET creates a new file, either as part of the project creation
process, or when you create a new file, it will use a name that describes what it is (in
this case, a form) followed by a number.

Welcome to Visual Basic .NET

25

Windows in the Visual Studio .NET IDE
At this point, you can see that the various windows in the IDE are beginning to show their purposes,
and we will take a brief look at them now before we come back to the Try It Out. Note that if any of
these windows are not visible on your screen, you can use the View menu to select and show them. Also
if you do not like the location of any particular window you can move it by clicking on its title bar (the
blue bar at the top) and dragging it to a new location. The windows in the IDE can float (stand out on
their own) or be dockable (as they appear above).

Server Explorer
The Server Explorer gives you management access to the servers on your network. Here you can create
database connections, and view the services provided by the available servers.

Toolbox
The Toolbox contains reusable components that can be inserted into your application. These can range
from buttons to data connectors to customized controls either purchased or developed yourself.

Design Window
The Design window is where a lot of the action takes place. This is where you will draw your user
interface and write your code. This window is sometimes referred to as the Designer.

Solution Explorer
The Solution Explorer window contains a hierarchical view of your solution. A solution can contain
many projects while a project contains code and code references that solve a particular problem.

Class View
The Class View window (shown as a tab with the Solution Explorer) gives you a tree view of the classes
in your program and shows the properties and methods that each contains. A class is code file that
groups data and the functions that manipulate it together into one unit. A property is data, and a
method is a function or subroutine.

Properties
The Properties window shows what properties the selected object makes available. Although you can set
these properties in your code, sometimes it is much easier to set them while you are designing your
application. You will notice that the File Name property has the value Form1.vb. This is the physical
file name for the form's code and layout information.

Task List
The Task List window highlights any errors encountered when you try to run your code. Clicking on
the item in this window will take you to the line of code containing the error.

Chapter 1

26

Output
When you run your code the progress made in reading it (or compiling it) is registered via messages
posted in the Output window.

Dynamic Help
The Dynamic Help window displays a list of help topics that relate to whatever in the IDE has focus. If
you click on the form in the Design Window and then open Dynamic Help, you will see a list of help
topics relating to forms.

Try It Out – Creating a HelloUser Project – Continued

1. Let's change the name of our form to something more indicative of what our application is.
Click on Form1.vb in the Solution Explorer window. Then, in the Properties window, change
the File Name property from Form1.vb to HelloUser.vb and hit Enter: When changing
properties you must either hit Enter or click off the property for it to take effect.

2. Notice that the form's file name has also been updated in the Solution Explorer to read
HelloUser.vb:

3. Now click on the form displayed in the main window; the Properties window will change to
display the form's Form properties (instead of the File properties, which we have just been
looking at). You will notice that the Properties window is dramatically different. The
difference is the result of two different views of the same file. When the form name is
highlighted in the Solution Explorer window, the physical file properties of the form are
displayed. When the form in the Design View is highlighted, the visual properties and logical
properties of the form are displayed.

Welcome to Visual Basic .NET

27

The Properties window allows us to easily set a control's properties. Remember properties are
a particular object's set of internal data. Properties usually describe appearance or behavior.
In the screenshot, you can see that properties are grouped together in categories –
Accessibility, Appearance, and Behavior are the ones shown in here:

You can see that under the Appearance category are such properties as BackColor (the form's
background color), Font (the typeface used for text on the form), and Text (the form's caption
displayed in the title bar). These are all examples of properties that describe the form's appearance.

One property, FormBorderStyle, tells Windows how to draw the form. In this case, the
window is resizable, meaning that when the form is displayed, the user can change its size
(like most application windows).

4. Right now, the title of our form (displayed in the bar at the top) is Form1. This isn't very
descriptive, so let's change it to reflect the purpose of this application. Locate the Text
property in the Appearance section of the Properties window and change its value to Hello
from Visual Basic .NET and hit Enter. Notice that the form's title has been updated to reflect
the change:

Chapter 1

28

If you have trouble finding properties, click the little AZ button on the toolbar towards the top of the
Properties window. This changes the property listing from being ordered by category to being ordered
by name:

5. We are now finished. Click on the Start button on the Visual Studio .NET toolbar (the blue
triangle) to run the application. As you work through the book, whenever we say "run the
project" or "start the project", just click on the Start button. An empty window with the title
Hello from Visual Basic .NET is displayed:

Notice how the grid pattern of dots has now disappeared. These are displayed at design
time to help us place controls such as boxes, labels, and radio buttons onto our form.
They're not needed (or even particularly desirable) at run time, so they're not shown.

Welcome to Visual Basic .NET

29

OK, that was simple, but our little application isn't doing much at the moment. Let's make it a little
more interactive. To do this we are going to add some controls – a label, textbox, and two buttons to the
form. This will let us see how the toolbox makes adding functionality quite simple. You may be
wondering at this point when we will actually look at some code. Soon! The great thing about Visual
Basic .NET is that you can develop a fair amount of your application without writing any code. Sure, the
code is still there, behind the scenes, but as we'll see, Visual Basic .NET writes a lot of it for us.

The Toolbox
The Toolbox is accessed via the View | Toolbox menu option, the Toolbox icon on the Standard menu
bar, or by pressing Ctrl + Alt + X.

The Toolbox contains a tabbed view of the various controls and components that can be placed onto
your form. Controls such as textboxes, buttons, radio buttons, and drop-down boxes can be selected
and then drawn onto your form. For the HelloUser application, we will only be using the controls on
the Windows Forms tab:

Here we can see a listing of standard .NET controls for Windows forms. The down arrow button to the
right of the Clipboard Ring tab title actually scrolls the Windows Forms control list down as there are
too many to fit in otherwise. The up arrow button on the Windows Forms tab scrolls the list up. Note
that the order in which your controls appear may be different.

Controls can be added to your forms in any order, so it does not matter if we add the label control after
the textbox or the buttons before the label.

Chapter 1

30

Try It Out – Adding Controls to the HelloUser Application

1. Stop the project if it's still running, as we now want to add some controls to our form. The
simplest way to do this is to click on the X button in the top right corner of the form.
Alternatively, you can click on the blue square in the Visual Studio .NET IDE (which displays
the text Stop Debugging if you hover over it with your mouse pointer).

2. Let's add a Label control to the form. Click on Label in the Toolbox to select it. Move the
cursor over the form's Designer. You'll notice that the cursor looks like a crosshair with a little
floating letter A beneath it. Click and hold the mouse button where you want the top left
corner of the label and drag the mouse to where you want the bottom right. (Placing controls
can also be accomplished by double-clicking on the required control in the Toolbox.)

3. If the Label control you have just drawn is not in the your desired location, or is too big or too
small, that is not really a problem. Once the control is on the form you can resize it or move it
around. The image opposite shows what the control looks like after you place it on the form. To
move it, click on the gray dotted border and drag it to the desired location. To resize it, click and
drag on one of the white box "handles" and stretch the control in the needed direction. The
corner handles resize both the horizontal and vertical dimension at the same time:

Welcome to Visual Basic .NET

31

4. After drawing a control on the form, we should at least configure its name and the text that it will
display. You'll see that the Properties window to the right of the Designer has changed to Label1,
telling you that you're currently examining the properties for it. In the Properties window, set our
new label's Text property to Enter Your Name: and its (Name) property to lblName:

5. Now, directly beneath the label, we want to add a textbox, so that we can enter a name. We're
going to repeat the procedure we followed for adding the label, but this time make sure you
select the TextBox from the toolbar. Once you have dragged-and-dropped (or double-clicked)
the control into the appropriate position, use the Properties window to set its Name property
to txtName and clear the Text property so that the textbox now appears to be blank.

Notice how, out of the eight sizing handles surrounding the control, only two are shown in white. By
default, the TextBox control cannot be made any taller than the absolute height necessary to
contain the font that it will use to draw the text.

6. In the bottom left corner of the form, add a Button control in exactly the same manner as you
added the label and textbox. Set its Name property to OK, and its Text property to &OK.

The ampersand (&) is used in the Text property of buttons to create a keyboard
shortcut (known as a hot key). The letter with the & sign placed in front of it will
become underlined to signal to users that they can select that button by pressing the
Alt-letter key combination, instead of using the mouse (on some configurations the
underline doesn't appear to the user until they press ALT). In this particular instance,
pressing Alt+O would be the same as clicking directly on the OK button. There is no need to
write code to accomplish this.

7. Now add a second Button control to the bottom right corner of the form and set the Name
property to btnExit and the Text property to E&xit. Your form should look similar to this:

Chapter 1

32

Modified Hungarian Notation
You may have noticed that the names given to the controls look a little funny. Each name is prefixed with
a shorthand identifier describing the type of control it is. This makes it much easier to understand what
type of control we are working with when we are looking through code. For example, say we had a control
called simply Name, without a prefix of lbl or txt, we would not know whether we were working with a
textbox that accepted a name or a label that displayed a name. Imagine if, in the previous Try It Out, we
had named our label Name1 and our textbox Name2 – we'd very quickly become confused. How about if
we left our application for a month or two, and then came back to it to make some changes?

When working with other developers, it is very important to keep the coding style consistent. One of
the most commonly used styles used for controls within application development in many languages is
Modified Hungarian notation. The notion of prefixing control names to identify their use was brought
forth by Dr. Charles Simonyi. He worked for the Xerox Palo Alto Research Center (XPARC), before
joining Microsoft. He came up with short prefix mnemonics that allowed programmers to easily identify
the type of information a variable might contain. Since Dr. Simonyi is Hungarian, and the prefixes
make the names look a little foreign, the name Hungarian Notation stuck. Since the original notation
was used in C/C++ development, the notation for Visual Basic .NET is termed Modified. Here is a
table of some of the commonly used prefixes that we shall be using in this book:

Control Prefix

Button btn

ComboBox cbo

CheckBox chk

Label lbl

ListBox lst

MainMenu mnu

RadioButton rdb

PictureBox pic

TextBox txt

Welcome to Visual Basic .NET

33

Hungarian Notation can be a real time-saver when looking at code someone else wrote, or at code that
you have written months past. However, by far the most important thing is to be consistent in your
naming. When you start coding, pick a convention for your naming. It is recommended that you use the
de facto standard Modified-Hungarian for Visual Basic .NET, but it is not required. Once you pick a
convention, stick to it. When modifying someone else's code, use theirs. There is very little code that is
ever written, put into production and then forgotten. A standard naming convention followed
throughout a project will save countless hours when the application is maintained.

Now let's get back to the application. It is now time to write some actual code.

The Code Editor
Now that we have the HelloUser form defined, we have to add some code to actually make it do
something interesting. We have already seen how easy it is to add controls to a form. Providing the
functionality behind those on-screen elements is not much more difficult. To add the code for a control,
just double-click on it. This will open the code editor in the main window:

Notice that an additional tab has been created in the main window. Now we have the Design tab and the
code tab. We drew the controls on the Design tab, and we write code on the code tab. One thing to note
here is that we have not created a separate file for the code. The visual definition and the code behind it
both exist in the same file: HelloUser.vb. This is actually the reason why building applications with
Visual Basic .NET is so slick and easy. Using the Design view you can visually lay out your application,
and then using the Code view add just the bits of code to implement your desired functionality.

You will also notice that there are two pull-downs at the top of the window. These provide shortcuts to
the various parts of our code. If you pull down the one on the left, Form1 (HelloUser), you will see a list
of all of the objects within our application. If you pull down the one on the right, (Declarations), you
will see a list of all of the defined functions or subroutines. If this particular form had a lot of code
behind it, these pull-downs would make navigating to the desired area very quick – jumping to the
selected area. However, since all of the code fits in the window, there are not a lot of places to get lost.

Chapter 1

34

Now let's look at the code in the window. The code in Visual Studio .NET is set up into regions designated
by the plus (+) and minus (-) buttons along the left side. These regions can be collapsed and expanded in
order to simplify what you are looking at. If you expand the region labeled Windows Form Designer
generated code, you will see a lot of code that Visual Basic .NET has automatically generated for us,
which takes care of defining each of the controls on the form and how the form itself should behave. We
do not have to worry about the code in this region, so collapse the Windows Form Designer
generated code region once more and let's just concentrate on the code we have to write ourselves.

Try It Out – Adding Code to the HelloUser Project

1. To begin adding the necessary code, click on the Design tab to show the form again. Then
double-click on the OK button. The code window will reopen with the following code. This is
the shell of button's Click event and is the place where we enter code that we want to be run
when we click on the button. This code is known as an event handler, and sometimes is also
referred to as an event procedure:

Private Sub OK_Click(ByVal sender As SystemObject, ByVal e As _
 System.EventArgs) Handles OK_Click

End Sub

Due to the typographic constraints in publishing, it is not possible to put the Sub
declaration on one line. Visual Basic .NET allows you to break up lines of code by
using the underscore character (_) to signify a line continuation. The space before the
underscore is required. Any whitespace preceding the code on the following line
is ignored.

Sub is an example of a keyword. In programming terms, a keyword is a special word that is
used to tell Visual Basic .NET to do something special. In this case, it tells Visual Basic .NET
that this is a procedure. Anything that we type between the lines Private Sub and End Sub
will make up the event procedure for the OK button.

2. Now add the highlighted code into the procedure:

Private Sub OK_Click(ByVal sender As SystemObject, ByVal e As _
 System.EventArgs) Handles OK_Click
 'Display a message box greeting the user
 MessageBox.Show("Hello, " & txtName.Text & _
 "! Welcome to Visual Basic .NET.", _
 "HelloUser Message")
End Sub

Throughout this book, you'll be presented with code that you should enter into your program if
you're following along. Usually, we'll make it pretty obvious where you put the code, but as we go
we'll explain anything that looks out of the ordinary.

3. After you have added the code, go back to the Design tab, and double-click on the Exit
button. Add the highlighted code to the ExitButton_Click event procedure.

Welcome to Visual Basic .NET

35

Private Sub ExitButton_Click(ByVal sender As SystemObject, ByVal e As _
 System.EventArgs) Handles ExitButton_Click
 'End the program
 Me.Dispose()
End Sub

You may be wondering what Me is. Me refers to the form. Just like the pronoun, me, it is just a
shorthand for referring to oneself.

4. Now that the code is finished, the moment of truth has arrived and we can see our creation.
First though, save your work by using File | Save from the menu, or by clicking the disk icon
on the toolbar.

5. Now click on the Start button on the toolbar. You will notice a lot of activity in the Output
window at the bottom of your screen. Providing you haven't made any mistakes in entering the
code, this information just lets you know what files are being loaded to run your application.

It's at this point that Visual Studio .NET will compile the code. Compiling is the activity of
taking the Visual Basic .NET source code that you've written and translating it into a form that
the computer understands. After the compilation is complete, Visual Studio .NET will run
(also known as execute) the program and we'll be able to see the results.

If Visual Basic .NET encountered any errors, they will be displayed as tasks in the Task List
window. Double-clicking on a task will transport you to the offending line of code. We will learn
more about how to debug the errors in our code in Chapter 11.

6. When the application loads you will see the main form. Enter a name and click on OK (or
press the Alt+O key combination):

7. A window known as a message box appears, welcoming the person whose name was entered
in the textbox to Visual Basic .NET – in this case Deborah:

Chapter 1

36

8. After you close the message box by clicking on its OK button, click on the Exit button on our
form. The application will close and you will be brought back to the Visual Basic .NET IDE.

That completes our first Visual Basic .NET application. Well done! Before we move on to the
next chapter, let's take a quick look at the Visual Studio .NET Help system.

Using the Help System
The Help system included with Visual Basic .NET is an improvement over Help systems in previous
versions. As you begin to learn Visual Basic .NET, you will probably become very familiar with the Help
system. However, it is worthwhile to give you an overview, just to help speed your searches for information.

The Help menu appears as:

As you can see this menu contains many more entries than the typical Windows application. The main
reason for this is the vastness of the documentation. Few people could keep it all in their heads – but
luckily, that's not a problem, as we can always quickly and easily refer to the Help system. Think of it as
a safety net for your brain.

One really fantastic new feature is Dynamic Help. If you turn this option on (by selecting Dynamic Help
from the Help menu), a window will display a list of relevant topics for whatever you may be working
on. If you followed the default installation and have not rearranged the IDE, the Dynamic Help is
displayed as a tab behind Properties.

Welcome to Visual Basic .NET

37

Let's say for example, that we are working with a textbox (perhaps the textbox in the HelloUser
application) and want to find out some information; we just select the textbox on our form and we can
see all the help topics that pertain to textboxes:

The other help commands in the Help menu (Contents, Index, and Search), function just as they would
in any other Windows application.

The domain of help topics to search and display is defined by the profile that we defined at installation.
However, the Edit Filters… menu option allows you to further focus what types of documentation to
include in the search:

Chapter 1

38

The filter is a logical statement that either includes or excludes documentation, based on some
predefined types. The statement is in the upper text area; the document attributes and values are listed
below. Although the filter equation can be edited directly, selecting attributes from the list automatically
updates the statement. You can then save your changes to the current filter name, or use Save As to
create a new one based on the existing equation.

Summary
Hopefully, you are beginning to see that developing basic applications with Visual Basic .NET is not
that difficult. We have taken a look at the IDE and how it can help you put together good software
quickly. The Toolbox allows you to add controls quickly and easily to your programs. The Properties
window makes configuring those controls a snap, while the Solution Explorer gives us a bird's eye view
of the files that make up our project. We even wrote a little code.

Questions
At this point, we have not covered much about Visual Basic .NET, the language. So these exercises
won't be too difficult.

1. What Modified-Hungarian prefix should you use for a combo box? A label? A textbox?

Welcome to Visual Basic .NET

39

2. (This assumes you set the Help Filter to Visual Basic and Related.) Open the Help System and
search for MessageBox. Notice how many topics are returned. Change the Help Filter option
on the My Profile screen, to No Filter. Repeat the search for MessageBox. Did the Help
System return more or fewer topics?

3. When creating a button, how would you make the button respond to a keyboard hot key?

The answers for these questions and those at the end of all the other chapters can be
found in Appendix B.

